細胞核内のDNAの最小単位のヌクレオチドは、リン酸、糖(五炭糖)、塩基で成る。
 五角形をしている五炭糖に5つある炭糖には、1‘〜5’の番号が振られている。
 数字の順はあくまで便宜的になのだろうが、リン酸(H3PO4)とまず結合するのは、五炭糖(の炭素)のうちの「5‘」だ。
 一方で、五炭糖(の炭素)のうちの「1’」が、塩基と結合する。
 したがって、ヌクレオチドは、五炭糖を真ん中にして、 <リン酸—糖(五炭糖)—塩基>という結合の仕方をしている、
 なお、五炭糖のうちの「2‘」だけがDNAとRNAで異なり、前者は水酸基(O)を持たないが(全体として→「デオキシリボース」)、後者は持つ(全体として→「リボース」)。日本語では「デオキシリボ核酸」等の語になって「核酸」が付いているのは、リン酸が「核」内にある「酸」だからだ。英語は、deoxiribonucleic acid。
 塩基(base)には4種がある。Adenine(アデニン、A)、Thymine(チミン、T)、Guanine(グアニン、G)、Cytosine(シトシン、C)だ。簡単にA、T、G、Cと称され、塩基(配列)の「文字情報」と言われたりされるが、むろん、塩基の表面にこれらの文字が刻印されているのではない。
 なお、RNAでは、上のうちTだけはUrasil(ウラシル、U)に代わる。
 DNA内の塩基にはプリン塩基とピリミジン塩基の二つがある。上のAとGはプリン塩基で、上のCとT(そしてRNAの場合のU)はピリミジン塩基だ。
 この塩基部分は、生物や細胞にとって必要不可欠の「情報」・「設計図」の作成に関係する<本体>だと言える。
 --------
 一個のヌクレオチドだけでは「縄ばしご」、遺伝子あるいはDNAにならない。
 第一に、便宜的な言い方をすると、「下」へ延びなければならない。タテの「握り縄」を長くしなければならない。
 この場合、上のヌクレオチドの五炭糖(の炭素現象)のうちの「3‘」が「下」にある別のヌクレオチドの「リン酸」と結合し、さらに「下」のヌクレオチドへと繋がっていく。
 それぞれの「リン酸」には最初のものとは異なるそれぞれの五炭糖が結合している。また、その五炭糖の「1’」にそれぞれの「塩基」が接合している。
 大まかに言えば、ヌクレオチドが鎖のように上から下へと繋がっている。「リン酸」を介して接合しているのだが、二つの「リン酸」を繋ぐのは五炭糖の「5‘」または「3’」で、この二つだけを上から順に見ると、「5‘」→「3’」→「5‘」→「3’」→「5‘」…という順になる。また、それぞれのヌクレオチドに「塩基」を接合するのは、つねに、それぞれの五炭糖の「1’」だ。
 --------
 第二に、「横」へと、広がらなければならない。
 この場合、「踏み板」(踏み縄)にあたる「塩基」を、<隣>にあるヌクレオチドの「塩基」と結合させることになる。あるいは、<噛み合わせる>ことになる。
 ここで重要なこと、不思議なことがある。
 塩基には上記のとおり4種類があるが、「隣」のヌクレオチドの塩基ののうち、接合する、あるいは「噛み合う」種類があらかじめ(不思議なことに)決まっている。
 すなわち、A-T、T-A、G-C、C-G、という4種の対応関係のみがある(4文字のあり得る組み合わせは4の4乗だが)。左右のセットで考えると、2種類しかない。
 なぜこうなっているかというと、A-T、G-Cの組み合せが必要なエネルギーが少なくて済む、という理由らしい。また、別の塩基と接合するに際してに必要な「水素結合」の個数(本数)がAとTの場合は2、GとCの場合は3と違っている、と指摘されている。
 こうして「隣の」ヌクレオチドの塩基との接合・結合(あるいは「対合」)によって、一つの「塩基」は一つの「塩基対」になる。「対合」する塩基のことを、「相補塩基」とも言う。
 --------
 一つのヌクレオチドが「鎖」状になって「下」に繋がっていくと、塩基もまた、種類を変えながら、ずっと続いていく。
 この塩基の並び方を「塩基配列」という。片方だけではなく双方があって塩基対が出来上がっているとした場合も、やはり「塩基配列」と言ってよいのかもしれない。
 重要でかつ不思議なことは、「相補」関係にある、向かい合った、または隣り合ったヌクレオチドの塩基の配列の仕方には、一定の<法則>があることだ。
 すなわち、片方の塩基配列6個分がかりに「CATTGA」だったとすると、「相補塩基」の塩基配列は必ず「GTAACT」になっている。
 これは上記の、A-T、G-Cの対応関係しかない、ということの延長の説明になるだろう。6個はつぎのような相補塩基と対の配列に変わる。
 C→G、A→T、T→A、T→A、G→C、A→T。こうして、「GTAACT」になる。
 また、別の話題になるが、「相補」関係にあるヌクレオチド、つまり、リン酸・糖・塩基の繋がり方は、五炭糖(の炭素)の位置について上に述べた片方のそれとは逆、すなわち、「3‘」→「5’」→「3‘」→「5’」→「3‘」…になっている、という。不思議で、絶妙なことだ。
 -------- 
 さて、生命に関する「情報」・「設計図」はリン酸や糖(五炭糖)の部分ではなく、A・T・G・Cという「塩基」(または塩基対)に記載されている。正確には、これらの塩基の独特で複雑な「配列」関係によって示されている。
 それらの<情報>は、DNAからRNAへ「転写」され、そのRNAが細胞質内のリボソームにより「翻訳・読解」されて、その指示情報に従って新たに「タンパク質」が作られる(ホモ・サピエンスのみならず、細菌・バクテリアを含む全ての生物に共通する、セントラル・ドグマ)。
 従って、生命に関する「情報」はタンパク質作りのための「設計図」であり、「レシピ」である、と言って差し支えない。
 そのタンパク質は多様なもので、諸種の「アミノ酸」がつながり合ったものだ。
 --------
 アミノ酸は、20種類がある、とされる。それらが組み合わさって、一定のタンパク質が生まれる。
 塩基には4種類があるが、そのうち2種類を使っただけでは、正確には2列の塩基配列を使っただけでは、16種の異なるアミノ酸しか指定することができない。AA、AG、AC、…と、4×4=16が限界だ。
 そこで、塩基は、3種のそれで、一つの性格のアミノ酸を指定している、とされている。
 GGA、CTT等々の組み合わせ、または配列の違いで、4の3乗の64とおりの異なるアミノ酸を指定することができる。しかも、64と20の間には相当の余裕がまだあるので、複数の三「文字」の組み合わせを一つのアミノ酸のために利用することができる。
 4種の塩基のうち3つの配列はアミノ酸の、ひいてはタンパク質の生成のための「暗号」のようなもので、塩基3個の配列は「コドン」(codon)と称される。
 64種類の「コドン」がいかなるアミノ酸に対応しているかを一覧できる表は、<コドンの暗号表>とも呼ばれる。
 --------
 塩基配列はしかしDNAの長さの範囲内で長々と続く可能性があるので、生命の維持または狭義の「遺伝」に関する「情報」として、何らかの一かたまりの区別が必要になってくるものと思われる。「複製」と「分化」を繰り返して維持されたり生成されたりする器官や臓器等々には違いがあるからだ。またそもそも、塩基配列の始めと終わりが明確でないと、作成が指示されるアミノ酸の並び方、ひいてはタンパク質を特定することができない。
 そこで、ATG(メチオニンというアミノ酸のためのコドン)を始まりと見なすことになっている、とされる。一方で、終わりを指定する「コドン」には、TAA、TAG、TGAの3つがある、とされる。
 以上の「コドン」以下は、主として森和俊・細胞の中の分子生物学—最新·生物科学入門(講談社ブルーバックス、2016)による。
 --------
 上の一区切りまたは一かたまりは、秋月には一個の「遺伝子」に該当するように見える。当然に、この点でも、一個の遺伝子はDNA全体の一部にすぎない。
 「ヌクレオチドが多数つながりあったものは、化学的にはDNA(デオキシリボ核酸)と呼ばれる」としたあと、続けてこう書く文献もある。
 「したがって、一つの遺伝子は、ある長さをもったDNA(あるいはDNAの一断片)と言ってもよい」。
 小林朋道・利己的遺伝子から見た人間(PHP研究所、2012)
 また、「非コードDNA」という概念があるように、DNAが全て「遺伝」情報を保持しているわけではない。「DNAの98%が謎」という書名の文献もある。もっとも、正確には、DNAの全ての部分が「情報」・「設計図」を〈直接に〉示しているわけではない、〈間接的に〉、つまり設計図どおりの作成に移るべきか否か、いつ始めるのか、いわゆる遺伝子の<発現>をさせるか否か、といった重要問題に関与している可能性が高い、と言うべきだろう。むろん、〈無駄な〉部分もある。さらに、のちに触れる。
 --------
 以上のDNAの構造に関する叙述またはノートに、「染色体」という言葉・概念は全く必要がない。
 染色体は<細胞分裂>(これによって「核」も「DNA」も(遺伝子群も)「分裂」するのだが)の過程で出現する構造体にすぎない。但し、核膜の一部または内面にあらかじめ「染色質」が用意されている、とされる。
 ——